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We examine a spiralling slender inviscid liquid jet which emerges from a rapidly
rotating orifice. The trajectory of this jet is determined using asymptotic methods,
and the stability using a multiple scales approach. It is found that the trajectory
of the jet becomes more tightly coiled as the Weber number is decreased. Unstable
travelling wave modes are found to grow along the jet. The breakup length of the jet
is calculated, showing good agreement with experiments.

1. Introduction
In this paper we present an asymptotic method to determine the trajectory and

linear stability of a slender jet with a curved centreline. We concentrate on the
problem of an inviscid jet, subject to surface tension forces, which is ejected from a
small hole in a rotating container. This problem arises in the manufacture of pellets
using the prilling process. Here hot liquid jets emerge from a rotating container and
break up into droplets due to a surface-tension-driven instability. The jets do not
fall significantly under gravity before they break up into droplets. After breakup the
droplets then fall under gravity where they solidify and form into pellets. See figure 1
(Andersen & Yttri 1997) for a photograph of jets in a typical prilling process, with
figure 2 showing the position of the container on the photograph.

The first significant work on the free surface flow of liquid jets is that of Lord
Rayleigh (1878). Rayleigh analysed the linear stability of an infinitely long, inviscid,
incompressible liquid jet with circular cross-section that was subjected to disturbances
from its equilibrium. He looked for travelling wave modes of the form exp(ikx+ αt),
where x is distance along the jet in the direction of the steady mean flow, t is time,
k is the wavenumber, Re(α) is the growth rate and Im(α) is the (negative) frequency.
Rayleigh showed that the unstable nature of liquid jets is caused by the surface
tension force acting on the jet. He found that spatially harmonic disturbances of the
radius grow in time according to

α2 =

(
σ

ρa3

)(
I ′s(ka)(1− s2 − k2a2)ka

Is(ka)

)
, (1.1)

where ρ is the density, a the undisturbed radius, σ surface tension and Is modified
Bessel function of order s, where the integer s > 0 represents the periodicity of the
motion around the cylindrical jet’s circumference. This result predicts that for s = 0
the jet is stable for ka > 1 and unstable for 0 < ka < 1. The jet is neutrally stable for
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Figure 1. Photograph of jets emerging from a rotating container in prilling. The dark segment
at the bottom of the photograph is an upper view of the rotating cylindrical container, which is
rotating anticlockwise. Hundreds of jets can be seen, each emerging from small holes on the curved
face of the cylinder. Some droplets, arising from jet breakup, can be observed too. The jet is seen
to break up at a distance from the cylinder of the order of a hundred times the radius of a hole.

Container

Jets

Figure 2. Diagram showing the position of the container on figure 1.

s > 1. By maximizing expression (1.1), the maximum value of the growth rate was
found to be associated with ka = 0.697.

It is generally accepted that Rayleigh’s inviscid linear model describes the beginning
of liquid jet breakup. Weber (1931) introduced viscosity into the stability analysis and
found that the most unstable wave was moved to longer wavelengths. A significant
review of the early work on liquid jets is given by Bogy (1979) and a more up to date
and extensive review is given by Eggers (1997). Other sources include the books by
Middleman (1995) and Anno (1977).

Keller & Weitz (1957) looked at a two-dimensional steady sheet of liquid in order
to study how the trajectory of a jet is affected when surface tension is included. They
found that including surface tension had the effect of making the sheets fall more
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sharply than with no surface tension. They found that for We < 1 the sheets rise
instead of fall.

Keller & Geer (1973) looked at flows of thin streams of water with any type of free
or solid boundary. They developed an asymptotic method using the slenderness of the
stream to determine thin steady two-dimensional flows under the effects of gravity.
Tuck (1976) determined the shape of a slender jet of water falling under gravity
(without surface tension). He considered a vertically falling jet with the dominant
velocity component in the vertical direction, and a curved jet that initially rises to a
peak before falling under gravity. The trajectory of this curved liquid jet was found
to be ballistic because surface tension was neglected. This study was restricted to jets
with elliptic cross-sections and produced results that agreed with the work of Keller
& Geer (1973) for a two-dimensional sheet of water.

Spatial instability of liquid jets was first considered by Keller, Rubinow & Tu
(1973). Their key idea was that all jets really start from a nozzle. They therefore
considered the instability of a circular cylindrical jet of liquid in still air under the
assumption that the wavenumber k of the disturbance is complex, while α is purely
imaginary. This means that the travelling wave disturbance grows with distance along
the jet. (In temporal instability, the wavenumber k is real and α is complex.) In their
analysis Keller et al. found that there are infinitely many unstable modes. They also
found that the spatial modes of the liquid jet are related to Rayleigh’s temporal modes
for high-speed jets. This explains why Rayleigh and others found good agreement
between their results and experimental data.

Liquid jets that leave an orifice and come into contact with air are known to break
up into droplets. The sizes of the drops that are produced are of great interest in
a variety of industrial processes, such as the injection of fuel into jet engines, the
production of miniature spherical nuclear fuel particles by the Sol-Gel process and
the production of fertiliser pellets by prilling. The early analytical work performed
on liquid jets predicted the formation of only one droplet for a given disturbance
wavelength. However experimental observations and more recent studies have found
that two droplets are formed (see Chaudhary & Maxworthy 1980a, b; Donnelly &
Glaberson 1966; Goedde & Yuen 1970). These are a main droplet and a smaller
satellite droplet. The size of these droplets is affected by the perturbation wavelengths
and magnitudes, and the Weber number.

Baird & Davidson (1962) looked at straight annular liquid jets where gravitational
effects were neglected. They found a singularity at We = 1. Their equations are only
accurate for long, fast annular jets. They found fair agreement with experiments.
However, for very short jets agreement was not found. They concluded that this was
due to the jet having relatively large menisci at the base, which would probably affect
the jet profile. Finnicum, Weinstein & Ruschak (1993) studied two-dimensional liquid
curtains falling under gravity. They found that the singularity at We = 1 is removable
and indicates that the fluid leaves the nozzle with an angle which is different from the
nozzle exit angle. For We > 1 a jet is always formed regardless of the angle at which
the fluid leaves the nozzle. However, when We < 1 this angle is found to be crucial.
Ramos (1996) studied a one-dimensional hydraulic model for inviscid incompressible
axisymmetric annular liquid jets. He found that a long-wavelength approximation
may not be valid for small Weber numbers. He also found for We < 1 the jet takes
odd shapes; again the long-wavelength approximation may no longer be valid. The
long-wavelength approximation is also not valid near the exit point. The occurrence
of this singularity is still an unresolved issue.

The work of Hilbing & Heister (1996) examines in some detail the nonlinear in-



46 I. M. Wallwork, S. P. Decent, A. C. King and R. M. S. M. Schulkes

es

p

O

O ′
(X(s, t ), 0, Z(s, t ))

Figure 3. Sketch of a curved jet in the (X,Z )-plane.

stability of a straight jet. A boundary element method was used to investigate the
nonlinear evolution of a straight liquid jet emerging from an orifice, in the absence
of gravity, up to the point of pinch-off. They predict the size and formation of both
main and satellite drops, taking into account the effects of velocity perturbations,
wavenumbers and Weber number. They found encouraging agreement with experi-
ments. Schulkes (1993) derived the one-dimensional nonlinear equations of motion
governing axisymmetric long-wavelength disturbances of a straight inviscid liquid jet.
He found exact periodic solutions to his equations, but these solutions only exist
for wavenumbers where the long-wavelength approximation is not applicable. He
looked at the numerical solutions of the nonlinear equations for the unstable case
and concluded that satellite droplets are always formed.

This paper considers the problem of determining the trajectory and stability of a
thin inviscid liquid jet that emerges from a rotating orifice. The viscous case will be
the subject of a separate paper. We will determine the trajectory and stability of a jet
emerging into a low-density fluid, so that the aerodynamic interference of air with the
jet can be neglected. We start by defining a suitable coordinate system to describe the
jet’s surface and centreline, and determine the equations of motion in this coordinate
system. Section 3 looks at the various steady solutions to our jet equations and what
effect surface tension and rotation have on the position of the jet’s centreline and
cross-section. In §§ 4 and 5 the stability of the jet is analysed by a linear stability
argument, using temporal and spatial stability methods respectively. Section 6 looks
at experimental evidence of liquid jets. A series of experiments was performed to see
how altering various parameters affects the trajectory, stability and droplet formation
of the jet. We then compare the theoretical predictions with the experiments.

2. The equations of motion
An inviscid liquid jet leaves a small orifice of radius a situated on the curved face

of a circular cylindrical container of radius s0 which is rotating at a constant rate Ω
about the axis of the cylinder. To describe this problem we choose a coordinate system
(x, y, z) which rotates with the container, having its origin at the axis of the container,
with the orifice positioned at (s0, 0, 0). If s0Ω

2 >> g (where g is the acceleration due
to gravity, where gravity acts in the direction of the negative y-axis) we will have
a rapidly rotating jet in which fluid is moving mainly in the plane perpendicular
to the axis of rotation (x, z-plane), and will consequently neglect the effects of the
gravitational body force (setting g = 0).
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Figure 4. Cross-section of a curved jet.

An orthogonal coordinate system is needed in which we can conveniently describe
the jet. One coordinate of this system will be the arclength s along the centreline of
the jet. In any cross-section of the jet we also have plane polar coordinates in the
radial and azimuthal directions (n, φ). These coordinates have unit vectors denoted
by es, en and eφ respectively, and are shown in figures 3 and 4.

The centreline of the jet (in the x, y, z-coordinate system) is described by (X(s, t) +
s0, 0, Z(s, t)). The unit vectors in this coordinate system are calculated using a principal
normal vector p and a binormal vector b to the centreline (shown in figure 4). The
position vector of any particle Q relative to the orifice O is

r =

∫ s

0

es ds+ nen, (2.1)

where s is the arclength and n a radial distance. It is straightforward to show that these
form an orthogonal coordinate system (e.g. en· eφ = −Z2

s cosφ sinφ + sinφ cosφ −
X2
s cosφ sinφ = 0, as X2

s + Z2
s = 1).

The dynamics of the jet are described by the continuity equation, Euler’s equations,
the kinematic condition on the free surface, the pressure condition on the free
surface, an arclength condition X2

s + Z2
s = 1 and v = w = 0 on n = 0, where

u = ues + ven +weφ is the velocity field. We non-dimensionalize these equations using
the following scalings:

ū =
u

U
, v̄ =

v

U
, w̄ =

w

U
, p̄ =

p

ρU2
, n̄ =

n

a
, ε =

a

s0
,

R̄ =
R

a
, s̄ =

s

s0
, t̄ =

tU

s0
, X̄ =

X

s0
, Z̄ =

Z

s0
,

 (2.2)

where U is the exit speed of the jet, R is the radius of the jet, p is the pressure and ε is
the aspect ratio. Substituting these scalings into our dynamical equations (these can
be found in Wallwork 2001 as they are too lengthy to give here), with due account
being taken of the motion of the unit vectors (and dropping overbars for simplicity
of notation), we obtain the conservation of mass

εn
∂u

∂s
+ (1 + εn cosφ(XsZss −XssZs))

(
v + n

∂v

∂n
+
∂w

∂φ

)
+εn(XsZss −XssZs)(v cosφ− w sinφ) = 0, (2.3)
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Euler’s equations

(1 + εn cosφ(XsZss −XssZs))

(
ε
∂u

∂t
+ εu(XstXs − ZstZs)

+εv cosφ(ZstXs −XstZs) + εw sinφ(XstZs − ZstXs) + v
∂u

∂n
+
w

n

∂u

∂φ

)
+εu

∂u

∂s
+ εu(XsZss −XssZs)(v cosφ− w sinφ)

= −ε∂p
∂s

+

(
2ε

Rb
(v cosφ− w sinφ) +

ε

Rb2
((X + 1)Xs + ZZs)

)
×(1 + εn cosφ(XsZss −XssZs)), (2.4)

(1 + εn cosφ(XsZss −XssZs))

(
ε
∂v

∂t
+ εu cosφ(XstZs − ZstXs)

−w
n

sinφ(ZsXt −XsZt) + εv cos 2φ(XstXs + ZstZs)

−εw cosφ sinφ(XstXs + ZstZs) + v
∂v

∂n
+
w

n

∂v

∂φ
− w2

n

)
+εu

∂v

∂s
− ε cosφ(XsZss −XssZs)u

2

=

(
−∂p
∂n
− 2ε

Rb
u cosφ+

ε cosφ

Rb2
((X + 1)Zs − ZXs + εn cosφ)

)
×(1 + εn cosφ(XsZss −XssZs)), (2.5)

(1 + εn cosφ(XsZss −XssZs))

(
ε
∂w

∂t
+ εu sinφ(ZstXs −XstZs)

+
v

n
sinφ(ZsXt −XsZt)− εv cosφ sinφ(XstXs + ZstZs)

+εw sin 2φ(XstXs + ZstZs) + v
∂w

∂n
+
w

n

∂w

∂φ
+
vw

n

)
+εu

∂w

∂s
+ ε sinφ(XsZss −XssZs)u

2

=

(
−1

n

∂p

∂φ
+

2ε

Rb
u sinφ+

ε sinφ

Rb2
(ZXs − (X + 1)Zs − εn cosφ)

)
×(1 + εn cosφ(XsZss −XssZs)), (2.6)

the kinematic condition

(1 + εn cosφ(XsZss −XssZs))

(
ε
∂R

∂t
+ (ZsXt −XsZt) cosφ+

w

n

∂R

∂φ
− v
)

+ εu
∂R

∂s
= 0

on n = R, (2.7)

the pressure condition

p =
κ

We
on n = R, (2.8)
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where

κ =
1

h

(
ε2 ∂

∂s

(
− 1

hE

∂R

∂s

)
+

1

n

∂

∂n

(
nh

E

)
+

∂

∂φ

(
− h

n2E

∂R

∂φ

))
(2.9)

is the curvature,

h = 1 + εn cosφ(XsZss −XssZs), (2.10)

E =

(
1 +

ε2

h2

(
∂R

∂s

)2

+
1

n2

(
∂R

∂φ

)2
)1/2

, (2.11)

the arclength condition

X2
s + Z2

s = 1 (2.12)

and

v = w = 0 on n = 0, (2.13)

where Rb = U/s0Ω is the Rossby number and We = ρ U2a/σ is the Weber number.
The Rossby number represents a balance between inertia and rotational forces and
the Weber number the balance between inertia and surface tension forces.

Equations (2.3)–(2.13) now give us a full set of expressions that represent the
behaviour of the curved jet. In the following sections we present a steady asymptotic
solution, based on small ε, which is of relevance to the prilling process.

3. Asymptotic form of steady-state solutions
We will consider the case where the jet leaves the orifice projected in a direction

normal to the surface of the cylindrical container in the rotating frame, with speed U.
The exit radius of the jet is taken to be the radius of the orifice a. In non-dimensional
variables this gives Xs = 1, X = Z = Zs = 0, R0 = u0 = 1 at s = 0. Asymptotic
expansions for u, v, p, R,X and Z are introduced and we simplify by considering flow
without azimuthal rotation, i.e. w = 0. We look for a slender liquid jet where the
velocity and pressure gradient are parallel to the centreline at leading order. We
therefore use the steady expansions

u = u0(s) + εu1(s, n, φ) + · · · , (3.1)

v = εv1(s, n, φ) + ε2v2(s, n, φ) + · · · , (3.2)

p = p0(s, n, φ) + εp1(s, n, φ) + · · · , (3.3)

R = R0(s) + εR1(s, φ) + · · · , (3.4)

X = X0(s) + εX1(s) + · · · , (3.5)

Z = Z0(s) + εZ1(s) + · · · , (3.6)

and then substitute these series into equations (2.3)–(2.13) (note that we write X0

and Z0 as X and Z respectively for simplicity) to obtain the following sequence of
equations:

n
du0

ds
+ v1 + n

∂v1

∂n
= 0, (3.7)
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u0

du0

ds
= −∂p0

∂s
+

1

Rb2
((X + 1)Xs + ZZs), (3.8)

∂p0

∂n
= 0, (3.9)

− cosφ(XsZss −XssZs)u
2
0 = −∂p1

∂n
− 2u0 cosφ

Rb
+

cosφ

Rb2
((X + 1)Zs − ZXs), (3.10)

∂p0

∂φ
= 0, (3.11)

sinφ(XsZss −XssZs)u
2
0 = −1

n

∂p1

∂φ
+

2u0 sinφ

Rb
+

sinφ

Rb2
(ZXs − (X + 1)Zs), (3.12)

u0

dR0

ds
= v1 on n = R0, (3.13)

p0 =
1

R0 We
on n = R0, (3.14)

p1 =
1

We

(
− 1

R2
0

(
R1 +

∂2R1

∂φ2

)
+ cosφ(XsZss −XssZs)

)
on n = R0, (3.15)

v1 = 0 on n = 0 (3.16)

X2
s + Z2

s = 1, (3.17)

with Xs = 1, X = Z = Zs = 0, u0 = R0 = 1 at s = 0. These equations, which represent
a balance between pressure gradient, inertia and body force, can be integrated and
simplified to give

p0 =
1

R0We
, (3.18)

u0 =

(
1 +

1

Rb2
(X2 + 2X + Z2) +

2

We

(
1− 1

R0

))1/2

, (3.19)

p1 =
n

WeR0

cosφ(XsZss −XssZs) + h1(s), (3.20)

v1 = −n
2

du0

ds
, (3.21)

Zss =
WeR0Xs

WeR0u
2
0 − 1

(
2u0

Rb
+
ZXs − (X + 1)Zs

Rb2

)
, (3.22)

R0,s = −WeR2
0((X + 1)Xs + ZZs)

Rb2(2WeR0u
2
0 + 1)

, (3.23)

1 = X2
s + Z2

s . (3.24)

Also, R1 = h2(s) cosφ + h3(s) sinφ − h1(s)WeR2
0 since R1 is periodic with period

2π, where the hi(s) could be found at next order. However as we require only the
leading-order equations to determine the centreline of the jet, this will not be done
here.
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Figure 5. The effects of variations in rotation on the centreline of a jet in the (X,Z)-plane for
various values of the Rossby number Rb = 1, 2, 10, with no surface tension (We = ∞). Here the
origin has been translated to the centre of the container.
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Figure 6. The centreline of a jet in the (X,Z )-plane for various Weber numbers (We = 10, 20,∞)
with Rb = 2 (note We = ∞ corresponds to no surface tension). The loops with a smaller value of
the Weber number are more tightly coiled. Here the origin has been translated to the centre of the
container.

Equations (3.22), (3.23) and (3.24) are a set of nonlinear ordinary differential
equations for X, Z and R0. This system of equations is solved numerically using
a fortran 77 program calling a NAG routine (D02BBF) that uses a Runge–
Kutta–Merson method subject to the initial conditions Xs = 1, X = Z = Zs = 0,
R0 = u0 = 1.

Figures 5 and 6 show the centreline of the steady jet for various parameter values.
The small circle at the origin represents the container. The graphs in figure 5 show the
trajectory for various values of the Rossby number for fixed (infinite) Weber number.
Smaller Rossby numbers correspond to more tightly coiled loops. On figure 6 the
graphs show the centreline for zero surface tension We = ∞, We = 20 and We = 10
for Rb = 2. The loops with a smaller value of the Weber number are more tightly
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Figure 7. The behaviour of arclength s against the radius of the jet for various Weber numbers
(Rb = 2).
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Figure 8. The behaviour of arclength s against the radius of the jet for various Rossby numbers
(We = 50).

coiled. Figures 7 and 8 show how the radius of the jet R0 varies with arclength s for
various Weber and Rossby numbers. The graphs show that the jet thins as it leaves
the orifice, as expected.

We find that there is a singularity at We = 1. This agrees with a number of papers
on liquid jets and sheets (see introduction). For 0 < We 6 1 we obtain no sensible
solutions. In this case the liquid emerges from the orifice too slowly to form a coherent
jet.

The numerics reveal that for 1 < We < ∞ there exists a constant s∗ > 0 such that
at s = s∗, u0 reaches a maximum and R0 reaches a minimum. For an example of
this situation see figure 9. Figure 10 shows that the value of s∗ increases rapidly as
the Weber number is increased. We note that s∗ → ∞ as We → ∞. For moderately
large values of the Weber number s∗ is very large. This explains why the minimum
is not shown on figures 7 and 8. When s � s∗, R0 becomes large and the slender
jet assumption breaks down, and hence the asymptotic procedure is no longer valid



The trajectory and stability of a spiralling liquid jet. Part 1 53

0.92
0 0.5 1.5 2.0

s

R0

1.0

0.94

0.96

0.98

Figure 9. Arclength s against the radius of the jet for We = 1.5 and Rb = 2.
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Figure 10. Graph showing the value of s∗ against Weber number (Rb = 2).

as s → ∞ for finite Weber number. However, since s∗ is very large for even modest
values of the Weber number, the jet will almost certainly have broken up before it
reaches s = s∗ (in the prilling process the jet is always observed to break up when
s = O(1)), and therefore this phenomenon is only of concern for fairly small values
of We− 1.

When We−1 is fairly small we have an exceptional case (see Keller & Weitz 1957).
Here the value of s∗ is 6 O(1) and the jet could possibly reach s = s∗ before breakup.
This suggests that something different happens as the Weber number tends to one, and
the slender jet theory may no longer apply. This exceptional case will be looked at in
future work. As an example, if we consider water, taking We = 1.1, ρ = 1000 kg m−3,
σ = 0.07 kg s−2, we find that U2a = 0.00008 m3 s−2, which corresponds to a slow or a
thin jet.
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4. Temporal stability of steady-state solutions
A linear stability analysis of our steady solutions is now performed. The lengthscale

over which the centreline curves is s = O(1), but we know that the radius of the
droplets caused by jet instability is of order a, which is comparable with ε when
s = O(1). We consider travelling wave modes of the form exp(iks̄ + λ̄t ), where
s̄ = s/ε, t̄ = t/ε, k = k(s) = O(1) and λ = λ(s) = O(1), so that we have a multiple
scales formulation giving rise to perturbations with wavelength of O(ε), as required.
Note that for the travelling wave to propagate away from the orifice, we require
Re(k)Im(λ) < 0. We perturb the steady solutions found in the previous subsection in
the following way:

u = u(s, n, φ, ε) + δũ(s, s̄, n, φ, t, t̄ ),

R = R(s, φ, ε) + δR̃(s, s̄, φ, t, t̄ ),

p = p(s, n, φ, ε) + δp̃(s, s̄, n, φ, t, t̄ ),

X = X (s, ε) + δεX̃ (s, s̄, t, t̄ ),

 (4.1)

where ũ = ũes + ṽen + w̃eφ, X = Xi+Zk, X̃ = X̃i+ Z̃k and δ is a small dimensionless

parameter. (We note that we first tried X̂ = X̃ 0(s, s̄, t, t̄ ) + εX̃ (s, s̄, t, t̄ ), but X̃ 0 was
found to be identically equal to zero.) We substitute (4.1) into the jet equations given
in § 2, retaining linear terms in δ only. We then substitute into these equations the
asymptotic series in ε obtained in § 3 for the steady state. At order δ we obtain

n
∂ũ

∂s̄
+ ṽ + n

∂ṽ

∂n
+
∂w̃

∂φ
= 0, (4.2)

∂ũ

∂t̄
+ u0(s)

∂ũ

∂s̄
= −∂p̃

∂s̄
, (4.3)

∂ṽ

∂t̄
+ u0(s)

∂ṽ

∂s̄
+ u0(s) cosφ

(
Zs
∂2X̃

∂s̄∂t̄
−Xs

∂2Z̃

∂s̄∂t̄

)
− cosφ

(
Xs

∂2Z̃

∂s̄2
− Zs ∂

2X̃

∂s̄2

)
u2

0(s) = −∂p̃
∂n
, (4.4)

∂w̃

∂t̄
+ u0(s)

∂w̃

∂s̄
+ u0(s) sinφ

(
Xs

∂2Z̃

∂s̄∂t̄
− Zs ∂

2X̃

∂s̄∂t̄

)
+ sinφ

(
Xs

∂2Z̃

∂s̄2
− Zs ∂

2X̃

∂s̄2

)
u2

0(s) = −1

n

∂p̃

∂φ
, (4.5)

∂R̃

∂t̄
+

(
Zs
∂X̃

∂t̄
−Xs

∂Z̃

∂t̄

)
cosφ− ṽ + u0(s)

∂R̃

∂s̄
= 0 on n = R0, (4.6)

p̃ =
1

We

(
− 1

R2
0

(
R̃ +

∂2R̃

∂φ2

)
+ cosφ

(
Xs

∂2Z̃

∂s̄2
− Zs ∂

2X̃

∂s̄2

)
− ∂2R̃

∂s̄2

)
on n = R0, (4.7)

ṽ = w̃ = 0 on n = 0, (4.8)

Xs

∂X̃

∂s̄
+ Zs

∂Z̃

∂s̄
= 0. (4.9)
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We will now look for the most general solutions to our stability problem above by
posing the following series solutions for the disturbance travelling wave modes:

ũ = i(exp(ik(s)̄s+ λ(s)̄t ))

(
ū1(n, s) +

∞∑
m=1

ūm0(n, s) cos(mφ) + ūm1(n, s) sin(mφ)

)
+ c.c.,

(4.10)

ṽ = (exp(ik(s)̄s+ λ(s)̄t ))

(
v̄1(n, s) +

∞∑
m=1

v̄m0(n, s) cos(mφ) + v̄m1(n, s) sin(mφ)

)
+ c.c.,

(4.11)

w̃ = (exp(ik(s)̄s+ λ(s)̄t ))

(
w̄1(n, s) +

∞∑
m=1

w̄m0(n, s) cos(mφ) + w̄m1(n, s) sin(mφ)

)
+ c.c.,

(4.12)

p̃ = (exp(ik(s)̄s+ λ(s)̄t ))

(
p̄1(n, s) +

∞∑
m=1

p̄m0(n, s) cos(mφ) + p̄m1(n, s) sin(mφ)

)
+ c.c.,

(4.13)

R̃ = (exp(ik(s)̄s+λ(s)̄t ))

(
R̄1(s) +

∞∑
m=1

R̄m0(s) cos(mφ) + R̄m1(s) sin(mφ)

)
+c.c., (4.14)

X̃ = exp(ik(s)̄s+ λ(s)̄t )X̄1 + c.c., (4.15)

Z̃ = exp(ik(s)̄s+ λ(s)̄t )Z̄1 + c.c., (4.16)

where c.c. denotes complex conjugate.
Substituting these series into (4.2)–(4.9) we obtain

ū1 = AI0(kn), v̄1 = AI1(kn),

w̄1 = 0, p̄1 = −A(λ+ iku0)I0(kn)

k
,

 (4.17)

ū10 = BI1(kn), v̄10 = B

(
I0(kn)− I1(kn)

kn

)
− iku0X̄1

Zs
,

w̄11 =
iku0X̄1

Zs
− BI1(kn)

kn
, p̄10 = −B(λ+ iku0)I1(kn)

k
,

Z̄1 = −XsX̄1

Zs
,


(4.18)

ūm0 = CmIm(kn), v̄m0 =
Cm

k

d

dn
(Im(kn)),

w̄m1 = −mCmIm(kn)

kn
, p̄m0 = −Cm(λ+ iku0)Im(kn)

k
for m > 1,

 (4.19)

ūm1 = DmIm(kn), v̄m1 =
Dm

k

d

dn
(Im(kn)),

w̄m0 =
mDmIm(kn)

kn
, p̄m1 = −Dm(λ+ iku0)Im(kn)

k
for m > 1,

 (4.20)
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R̄1 =
v̄1

λ+ iku0

, R̄10 =
Zsv̄10 − λX̄1

Zs(λ+ iku0)
, R̄m0 =

v̄m0

λ+ iku0

for m > 1,

R̄m1 =
v̄m1

λ+ iku0

for m > 1 on n = R0,

 (4.21)

p̄1 =
R̄1

We

(
k2 − 1

R2
0

)
, p̄10 =

1

We

(
k2X̄1

Zs
+ k2R̄10

)
,

p̄m0 =
R̄m0

We

(
− 1

R2
0

(1− m2) + k2

)
for m > 1,

p̄m1 =
R̄m1

We

(
− 1

R2
0

(1− m2) + k2

)
for m > 1 on n = R0,


(4.22)

where A, C , D and X̄1 are arbitrary functions of s, B = 2iku0X̄1/Zs, I0, I1 and Im are
the zeroth-, first- and mth-order modified Bessel functions, respectively, and m is an
integer. We note that equations (4.17), (4.18), (4.19) and (4.20) will each give rise to a
different eigenvalue λ.

If we now substitute the solutions into these boundary conditions we obtain the
eigenvalue relation

(λm + iku0)
2 =

1

We

(
1

R2
0

(1− m2)− k2

)
k
I ′m(kR0)

Im(kR0)
, (4.23)

where m represents the parameter associated with the azimuthal terms in the Fourier
expansion and I ′m(kR0) represents (d/dx Im(x))|x=kR0

. Also, we have written λ = λm to
distinguish between each mode.

We will now interpret equation (4.23) in terms of temporal stability. We consider
an instability mode of the form exp(iks̄ + λ̄t ) where λ is complex and k is real. For
an unstable mode we require Re(λ) > 0. From equation (4.23) we obtain an infinite
number of neutrally stable eigenvalues (which corresponds to λm being purely imagi-
nary) for the problem and one unstable eigenvalue. The neutrally stable eigenvalues
are given by

λm = −iku0 ±
√

1

We

(
1

R2
0

(1− m2)− k2

)
k
I ′m(kR0)

Im(kR0)
, (4.24)

for m 6= 0. On first inspection this mode looks similar to the classic Rayleigh mode
(given by equation (1.1)). However, this mode varies with the arclength along the jet.

The unstable mode (corresponding to the φ independent part of (4.10)–(4.14)) is
given by

λ0 = −iku0 ±
√

1

We

(
1

R2
0

− k2

)
k
I1(kR0)

I0(kR0)
. (4.25)

The mode given by (4.25) is unstable when 0 < k < 1/R0, since Re(λ0) > 0. We find
that the most unstable mode occurs when k = k∗ = 0.697/R0. Therefore the most
unstable mode has a wavenumber which varies with s.

We now show graphically how the growth rate and corresponding wavenumber
for this most unstable mode varies with arclength s for various Rossby and Weber
numbers. Figures 11(a) and 12(a) show the growth rate Re(λ0) for the most unstable
mode plotted against arclength. Figures 11(b) and 12(b) show the wavenumber which
corresponds to the most unstable mode k∗ against s.
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Figure 11. Arclength s against (a) the growth rate Re(λ0) of the most unstable mode and (b) k∗
for various Weber numbers (Rb = 2).
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Figure 12. Arclength s against the (a) growth rate Re(λ0) of the most unstable mode and (b) k∗
for various Rossby numbers (We = 50).

The functions A, B, C , D, X̄1 and Z̄1 are not determined here. When these functions
appear in the above equations they can be eliminated. For example when A appears
it cancels throughout. Therefore in a linear theory the precise determination of these
is not necessary. If we performed a weakly nonlinear analysis then they would be
found at higher-order using secularity conditions. The secularity condition would be
found at order δ3 where a Landau type equation would be obtained.† This weakly
nonlinear calculation would only give a small correction to the prediction of linear
theory. Since the breakup mechanism is strongly nonlinear a weakly nonlinear theory
would give little extra information.

5. Spatial stability of steady-state solutions
We also consider spatial as well as temporal stability, following Keller et al.

(1973). We again consider an instability mode of the form exp(ik(s)̄s + λ(s)̄t ) where
k is considered complex while λ (= −iω) is purely imaginary (where ω is the real
frequency). The mode is unstable when Im(k) < 0, and the largest growth rate will
correspond to the most negative value of Im(k). As we are considering the same mode

† We expect the perturbations to satisfy δ2 = ε, as in Schulkes (1993). Though the linear stability
analysis will still be valid even if this distinguished limit does not apply here.
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Figure 13. Arclength s against (a) the frequency which corresponds to the most unstable mode and
(b) the modulus of the growth rate |k1| of the most unstable mode for various Rossby numbers
(We = 50).

we obtain the same eigenvalue relation for the problem, namely

WeR2
0Im(kR0)(ω − ku0)

2 = kI ′m(kR0)(R
2
0k

2 + (m2 − 1)). (5.1)

Prior to a numerical solution of this it is worthwhile constructing the large Weber
number asymptotics of (5.1), looking for solutions of k in the following series:

k = k0 + k1We−1/2 + k2We−1 + · · · , (5.2)

as We→∞.
Substituting this series for k into (5.1) we obtain two solutions given by

k0 =
ω

u0

, k1 = ±
(
ωI ′m(ωR0/u0)(ω

2R2
0 + u2

0(m
2 − 1))

R2
0u

5
0Im(ωR0/u0)

)1/2

, (5.3)

k0 = ± ijmn
R0

, k1 = 0, k2 =
(2ωR0jmnu0 ∓ i(ω2R2

0 − j2
mnu

2
0))jmn(j

2
mn − m2 + 1)

(ω2R2
0 + j2

mnu
2
0)

2
, (5.4)

where jmn is the nth positive root of the Bessel function Jm.
From (5.3) we see that k0 is real. The correction k1 is real when m 6= 0. When m = 0,

k1 is real for ω2R2
0 > u2

0. These all correspond to neutrally stable spatial modes. The
correction k1 is complex when m = 0 and ω2R2

0 < u2
0. This complex case represents

a spatially unstable travelling wave mode when the negative alternative sign in (5.3)
is chosen. (The positive alternative sign in (5.3) represents a spatially stable solution.)
This spatially unstable solution has O(1) wavelength, O(1) phase speed and O(We−1/2)
growth rate.

From (5.4) we see that k0 is purely imaginary, while k2 is complex. The negative
alternative sign in k0 in (5.4) corresponds to spatially unstable modes (and the positive
sign represents spatially stable modes). The growth rate of these spatially unstable
modes are O(1) but the wavelengths are O(We), so that these are long-wavelength
modes. The main droplets produced by breakup will have a diameter which is
comparable to the diameter of the jet. These droplets will be produced by an unstable
mode for which the real part of k is O(1). Consequently, we do not expect the unstable
modes given by (5.4) to be as important physically as those given by (5.3).

Figures 13(a) and 13(b) show the most unstable mode associated with (5.3) for
the large Weber number asymptotics. Figure 13(a) shows the frequency of the most
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unstable mode given by (5.3) against s for various Rossby numbers. Figure 13(b)
shows the growth rate of the most unstable mode given by (5.3).

Figures 14(a) and 14(b) show numerical solutions to (5.1). On each line ω is real.
The most unstable mode for each value of s occurs at the minimum point on each
curve. The |Im(k)| decreases as arclength s increases. However, this still produces a
growth rate which increases with s since the actual growth rate is equal to −s̄Im(k) =
−sIm(k)/ε. The numerical results from figure 14(a) agree with our large Weber
number asymptotics. It can be seen that the modes are spatially unstable, in each case.

6. Experiments
We will now describe a series of experiments to verify the trends that the theory

predicts, performed in the Applied Mathematics Laboratory at the University of
Birmingham.

The apparatus consists of a cylindrical can (diameter = 8.5 cm, height = 11.5 cm)
that contains two small holes (diameters of 1 mm or 3 mm respectively at opposite ends
of a diameter). This can is attached by means of a long thin paddle to an electronic
stirrer (Heidolph Stirrer – Model RZR2021) with digitally controlled rotation rate (in
a clockwise direction). A tube is fed into the can from a tap to allow a continuous
water supply. This apparatus is all contained in a transparent tank that collects the
excess water. The trajectory of the jet is captured by means of a high-speed digital
camera (Kodak MotionCorder 3000, with a capture rate of up to 3000 frames per
second). The images from the camera were loaded into Image-Pro Express from which
we can take digital measurements accurate to a tenth of a millimetre.

In the paper so far we have worked in a rotating frame of reference. All the
theoretical results that we have produced have been in this rotating frame. As the
experimental pictures that we will produce are not in a rotating frame we will need
to convert back to the non-rotating frame when we compare the theory to the
experiments. For the various different experiments we need to calculate the exit speed
of a jet as it leaves the hole. The exit speed of the jet in the non-rotating frame is
calculated using the formula

U1 =
√

(s0Ω)2 +U2, (6.1)

where U is the speed in the rotating frame.



60 I. M. Wallwork, S. P. Decent, A. C. King and R. M. S. M. Schulkes

(a)
–0.1

0.1

0.3

0.5

2.4 1.4 0.91.9
x

z

(b)
0.0

0.2

0.4

0.6

2.4 1.4 0.91.9
x

z

(c)
–0.1

0.1

0.3

0.5

z

2.4 1.4 0.91.9

x

Figure 15. Pictures of a jet emerging from the small hole with the can rotating, showing experiments
against theory (dashed line) for different rotation rates: (a) 50 r.p.m., (b) 100 r.p.m., (c) 200 r.p.m.
Note that the Weber number is not constant in the above three pictures.

Figure 15(a–c) shows three different jets emanating from the smaller hole. The
dotted lines on the figures correspond to the centreline of the jets predicted by the
theory in each case. Figure 15(a) shows a picture of a jet that is leaving the can,
rotating at 50 r.p.m. It can be seen clearly that the jet breaks up into a number of
droplets. These droplets are of slightly different sizes. This may be due to a slight
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Rotation rate Exit speed U1 Breakup length divided
(r.p.m.) (m s−1) by initial jet radius

62 1.16 20.5
101 1.22 21.3
155 1.32 22.0
167 1.35 22.5
51 1.54 22.5
58 1.54 22.0

100 1.58 22.1
105 1.59 24.9
147 1.65 30.0
179 1.72 31.3

Table 1. Table of breakup lengths for experiments using the 3 mm hole.
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Figure 16. Theoretical predictions of We1/2 against the breakup length of the jet divided by the
jet radius (at the orifice) produced from linear spatial stability for various Rossby numbers. The
symbols correspond to the experimental data points obtained from the 3 mm hole in the experiment.
The Rossby number of each theoretical curve and each data point is indicated. The Weber number
was varied in the experiment by varying the ambient water level in the container. In this graph,
|A| = 0.24. This single value for |A| was found by fitting theory to experimental data. Here ε= 0.0353.

instability that occurs in the form of the can vibrating when it is rotated (although
for a straight jet droplets are also of different sizes). The droplets that are observed
are approximately the same size as the radius of the hole.

Figure 15(b) shows a picture of a jet that is leaving the can rotating at 100 r.p.m.
From this picture it can be seen that the jet is more curved than at 50 r.p.m. for this
higher rotation rate. This agrees with our theory.

Figure 15(c) shows a jet that leaves the can when it is rotating at a speed of
200 r.p.m. (though for a lower We than in the previous two pictures). We can also
see that this jet is even more curved than in the previous two cases due to the higher
rotation rate. The formation of satellite droplets can be clearly seen. These are not
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(a)

(b)

(c)

Figure 17 (a–c). For caption see facing page.

predicted by the linear theory as they are a nonlinear effect. From figure 15(a–c) we
can see that the theoretical trajectories for the jets’ centrelines are in reasonably good
agreement with the experiments. The deviation between the two may be due to the
fact that air resistance has not been taken into account in the model.

To estimate the breakup length from the linear stability results we require∣∣∣∣ε1/2A
I1(kR0)

λ+ iku0

exp(−kis/ε)
∣∣∣∣ = R0(s), (6.2)

as in Middleman (1995). Measured breakup lengths are shown in table 1 for the
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(d )

(e)

( f )

Figure 17. Pictures of a jet emerging from the small hole with the can rotating at a rate of 100 r.p.m.,
showing progressive time steps: (a) t = 0.0130 s, (b) 0.0135 s, (c) 0.0140 s, (d ) 0.0145 s, (e) 0.0150 s,
(f) 0.0155 s.

larger of the two holes. This shows a general trend for the breakup length divided by
the initial jet radius to increase with U1. Figure 16 shows the theoretical predictions
against experimental data for the breakup length of the jet emerging from this hole.
The experimental data are in reasonable agreement with the theory. We have fitted
the theoretical lines to the data points on the graph (as in Middleman 1995). In order
to do this, for figure 16, |A| = 0.24. Figure 16 suggests that the jet breaks up further
away from the orifice for lower Rossby number. Also, increasing the Weber number
increases the breakup length, as with straight jets. There are discrepancies between the
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data points and the theory. This may be because we have used a linear theory, while the
breakup mechanism is a nonlinear effect. Also, it is difficult to achieve s0Ω

2 � g in our
experiments (due to the small scale) so the jets produced do not exactly lie in a plane.

We will now show in more detail the dynamics of jet breakup. Figure 17(a–f )
shows the breakup of a liquid jet that is leaving the smaller hole in our rotating can.
The figures show progressive time steps with a time between each picture of 0.0005 s.
In figure 17(a) we can see that a droplet is starting to be formed at the end of the
jet. The detachment of this droplet from the jet can then be seen in the next sequence
of pictures. The droplet is completely detached by the time indicated in figure 17(f ).
Figure 17(f ) also shows that as the droplet forms, a secondary droplet forms on the
tip of the thread. On figure 17(e) we can see that just before the droplet separates
it forms a conical connection with the thread (a similar phenomenon was noted by
Peregrine, Shoker & Symon 1990). Figure 17(d, f ) shows a swell in the liquid jet being
amplified and propagating towards the nascent droplet at the end of the thread. This
swell will form the next droplet in the sequence. The breakup is better shown by a
movie, found at http://www.mat.bham.ac.uk/I.M.Wallwork.

7. Conclusions
The trajectory of a rotating, slender inviscid jet emanating from a small hole has

been determined. We have considered the temporal stability of the steady flows of
this jet using asymptotic methods, and found a mode which appears superficially
similar to the classical Rayleigh mode. However our mode is a function of the long
lengthscale s and varies slowly with arclength along the jet. We have extended the
spatial stability work of Keller et al. (1973) to include our long lengthscale s. Finally
we have performed a series of small-scale experiments looking at the trajectory and
breakup of slender liquid jets, finding reasonably good agreement between theory and
experiments.

The methods described here are applicable to other situations. For example the
dynamics of a jet draining under gravitational body force (without rotation) and a
full three-dimensional problem with both gravity and rotation can be solved using a
similar method (see Wallwork, Decent & King 2000; Wallwork 2001).

I. M. Wallwork would like to thank Norsk Hydro and EPSRC for their financial
support during this work.
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